
VBA in Excel 3

Arrays in VBA

1. In VBE insert a new module Module1

2. Add the following code

Option Explicit

Function TestRange(rng As Range)

 Dim Arr()

 Dim R As Integer, C As Integer

 Dim i As Integer, j As Integer

 Dim OneDimension As Boolean, Vertical As Boolean

 R = rng.Rows.Count

 C = rng.Columns.Count

 OneDimension = False

 If R > 1 Then

 If C > 1 Then

 ReDim Arr(1 To R, 1 To C)

 Else

 ReDim Arr(1 To R)

 OneDimension = True

 Vertical = True

 End If

 Else

 ReDim Arr(1 To C)

 OneDimension = True

 End If

 If OneDimension Then

 If R > 1 Then

 For i = 1 To R

 Arr(i) = rng(i)

 Next i

 Else

 For i = 1 To C

 Arr(i) = rng(i)

 Next i

 End If

 Else

 For i = 1 To R

 For j = 1 To C

 Arr(i, j) = rng(i, j)

 Next j

 Next i

 End If

 If OneDimension Then

 If Vertical Then

 ' Returns a vertical vector As the input using TRANSPOSE

 TestRange = WorksheetFunction.Transpose(Arr)

 Else

 TestRange = Arr

 End If

 Else

 TestRange = Arr

 End If

End Function

3. Check your code by launching Compile VBAProject from the Debug menu
4. Activate the Excel sheet and add a few values as in the figure below:

 A B C D

1 1 2 3

2 4 5 6

3 7 8 9

4 10 11 12

5

6

5. Insert the function TestRange in cell D1 with the argument A1:C4

6. Transform the range D1:F4 in an array formula as shown in Lab 3.

7. Add a breakpoint at the beginning of the code and execute the function for a horizontal one line range,

for a vertical one line range and for a rectangular range and follow the execution of the code. Check the

values of the variables OneDimension and Vertical.

Functions that return a single value.

Program to evaluate the sum of an array

1. Add the following code to Module 1

Function SumArray(rng As Range) As Double

 Dim Arr()

 Dim Sum As Double

 Dim R As Integer, C As Integer

 Dim i As Integer, j As Integer

 R = rng.Rows.Count

 C = rng.Columns.Count

 Arr = rng

 Sum = 0

 For i = 1 To R

 For j = 1 To C

 Sum = Sum + Arr(i, j)

 Next j

 Next i

 SumArray = Sum

End Function

2. Activate the Excel sheet and insert the function SumArray into an empty cell with the arguments A1:C4:

3. Check the returned value against the library function SUM

REMARK: You’ll notice that reading the range into an array is easier in VB by using a variant variable. There’s

no need to loop over the number of rows and columns to read the individual values of the range and assign

them to the VB array. Instead through a simple assignment operation we can read the whole range into an

array on the line:

 Arr = rng

Let’s change our function to evaluate the sum of elements above the main diagonal of the array

1. Change the loop about j as follows:

 For j = i To C

REMARK: By changing the inner loop, when the variable that counts the rows (i) is 1, the inner loop will go

from 1 to the number of columns (C). When i is 2, the inner loop will go from 2 to C, when the current row i is

3, j will go from 3 to C and so on. Basically with this small change. We sum up only the values above the main

diagonal of the array.

REMARK: You’ll notice that the function does not check if the array is square (having the same number of

rows and columns)

Let’s change our function to check if the range is square. If not, a message should be returned. We will need

to change the data type of the function first from Double to Variant.

2. Change the definition of our function as follows:

Function SumArray(rng As Range) As Variant

3. Add the following code to our function after reading the rows and columns:

 If R <> C Then

 SumArray = "Not square"

 Exit Function

 End If

4. Re-execute the function SumArray in our sheet by pressing Ctr+Alt+F9
5. Change the function arguments of the function from A1:C4 to A1:C3

HOMEWORK

Use the SumArray function to write a VBA function that finds out the maximum element over the main

diagonal of a square matrix. Name this function SumMain

Functions that return an array.

Function that scales a square array

1. Add the folowing code

Function ScaleArr(rng As Range, ByVal sc As Double) As Variant

 Dim Arr()

 Dim R As Integer, C As Integer

 Dim i As Integer, j As Integer

 R = rng.Rows.Count

 C = rng.Columns.Count

 If R <> C Then

 ScaleArr = "Not square"

 Exit Function

 End If

 Arr = rng

 For i = 1 To R

 For j = 1 To C

 Arr(i, j) = Arr(i, j) * sc

 Next j

 Next i

 ScaleArr = Arr

End Function

2. Check your code by launching Compile VBAProject from the Debug menu

3. Activate the Excel sheet and insert the function ScaleArr into an empty cell with the arguments A1:C4 and

2:

4. Change the arguments of the function to A1:C3 and 2

5. Select a range 3 by 3 starting from the cell in which you’ve inserted the ScaleArr function and turn it into

an array formula

6. Change the value of the scale factor in the inserted function

Function that multiplies two arrays

Multiplication of two matrices is defined if and only the number of columns of the left matrix is the same as

the number of rows of the right matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their matrix

product AB is the m-by-p matrix whose entries are given by dot product of the corresponding row of A and

the corresponding column of B:

𝑐𝑖,𝑗 = 𝑎𝑖,1𝑏1,𝑗 + 𝑎𝑖,2𝑏2,𝑗 +⋯+ 𝑎𝑖,𝑛𝑏𝑛,𝑗 =∑𝑎𝑖,𝑘𝑏𝑘,𝑗

𝑛

𝑘=1

1. Add the following code

Function MatMult(rng1 As Range, rng2 As Range) As Variant

 Dim A(), B(), C() As Double

 Dim m As Integer, n As Integer, p As Integer

 Dim i As Integer, j As Integer, k As Integer

 m = rng1.Rows.Count

 n = rng1.Columns.Count

 p = rng2.Columns.Count

 If rng1.Columns.Count <> rng2.Rows.Count Then

 MatMult = "Invalid"

 Exit Function

 End If

 ReDim C(1 To m, 1 To p)

 A = rng1

 B = rng2

 For i = 1 To m

 For j = 1 To p

 C(i, j) = 0

 For k = 1 To n

 C(i, j) = C(i, j) + A(i, k) * B(k, j)

 Next k

 Next j

 Next i

 MatMult = C

End Function

Macros in Excel

1. Activate the DEVELOPER tab and click Macros

2. In the opened dialog box type the name TestMacro, select This Workbook from the dropdown list at the

bottom and click Create

3. In the module window, add the code to the TestMacro subroutine

Sub TestMacro()

 Dim wks As Worksheet

 Dim Texts(1 To 3, 1 To 1) As String

 Dim Values(1 To 3, 1 To 1) As Integer

 Texts(1, 1) = "Water"

 Texts(2, 1) = "Heating"

 Texts(3, 1) = "Electricity"

 Values(1, 1) = 125

 Values(2, 1) = 350

 Values(3, 1) = 75

 ' Adds a new sheet in the current workbook

 Set wks = Application.ActiveWorkbook.Sheets.Add

 ' Inserts the text in the range A1:A3

 wks.Range("A1:A3").Value = Texts

 ' Inserts the values in the range B1:B3

 wks.Range("B1:B3").Value = Values

 ' Adds the text TOTAL in cell A4

 wks.Cells(4, 1).Value = "TOTAL"

 wks.Cells(4, 1).Font.Bold = True

 ' Adds the formula SUM in cell B4

 wks.Range("B4").Formula = "=SUM(B1:B3)"

End Sub

4. Activate the Excel sheet and launch the macro by clicking the command Macros in the DEVELOPER tab

5. Add a breakpoint in the beginning of the macro and execute step by step the macro using the key

combination SHIFT+F8

