
VBA in Excel 1

Creating Simple Function in VBA in Excel

1. Start Microsoft Excel 2013
2. Add the values form the figure below

1. Launch Visual Basic from the DEVELOPER tab.
2. In Visual Basic Editor (VBE) insert a module (menu Insert → Module)
3. Type the following code:

4. Close VBE and return to Microsoft Excel 2013
5. Move the cursor to cell C2
6. Launch Insert Function command

7. In the opened dialog box select the category User Defined from the dropdown list and the
function MySum from the list of available functions and press OK.

8. In the Function Arguments dialog box select the two parameters of the function by clicking in
the B1 and B2 cell respectively.

9. Press OK

Debugging and inspecting variables

1. Reopen VBE
2. In the statement MySum = a + b toggle a breakpoint (Debug →Toggle Breakpoint)
3. Activate the Excel workbook
4. Change the content of cell B2 to 1.53 and press Enter

Notice that Excel will recalculate the sheet and call again the Visual Basic function MySum. Since we’ve
toggled a breakpoint in line MySum = a + b, the execution stops in this point. When you move the
mouse pointer over a variable, a tooltip window will pop up with the actual value of the variable.

You can advance the execution step by step by pressing F8 (Debug → Step Into) or Continue (F5).

1. Change the MySum function as follows:

Function MySum(a As Double, b As Double) As Double

 MySum = a + b

End Function

2. Activate the current workbook in Excel and do a recalculate by pressing CTRL+ALT+F9
3. Explain the differences between the previous and current example

Decision Algorithms

We will write a VB function that evaluates the mathematical function:

𝑓(𝑥) = {
𝑥2 + 2𝑥 𝑥 ≤ 0
𝑥 + 3 0 < 𝑥 < 1
2𝑥 𝑥 ≥ 1

1. Activate VBE and in module Module1 add the following code:

Function MyFunction(x As Double) As Double

 If (x <= 0) Then

 MyFunction = x ^ 2 + 2 * x

 Else

 If (x >= 1) Then

 MyFunction = 2 * x

 Else

 MyFunction = x + 3

 End If

 End If

End Function

2. Add a breakpoint in the first line of the function and execute the function for three diferent value :
-1, 2 and 0.5. Follow the flow of the function by pressing repeatedly F8 to see how the function
is executed based on the entered value

Loops with known number of steps

We will write a VB function to calculate the factorial of a number.

1. Activate VBE and in module Module1 add the following code

Function Factorial(n As Long) As Long

 Dim i As Integer

 Factorial = 1

 For i = 1 To n

 Factorial = Factorial * i

 Next i

End Function

2. Add a breakpoint in the line Factorial = Factorial * i and run the function for different values of
the parameter n.

REM. You’ll notice that the function is able to calculate the factorial of a number up to 12. If the
parameter is greater than 12 an overflow of the Long data type occurs.

1. Change the function to deal with numbers greater than 12. In case of a number greater than 12,
the function will return an error message “Overflow”.

Function Factorial(n As Long) As Variant

 Dim i As Integer

 If (n > 12) Then

 Factorial = "Overflow"

 Else

 Factorial = CLng(1)

 For i = 1 To n

 Factorial = Factorial * i

 Next i

 End If

End Function

REM. You’ll notice that we changed the data type of the function from Long to Variant. The Variant data
type can hold any of the other data types: numerical (Integer, Long, Single or Double) or string
(String).

Also in the Else branch we have added a conversion from 1 (which defaults to Integer) to CLng(1)
which will force the Factorial function to hold a Long type.

Inspecting the variables with the Watch window

2. Add two breakpoint in the lines: Factorial = “Overflow" and Factorial = CLng(1).
3. Move the cursor over the variable Factorial and from the context menu select the command

Add Watch.
4. In the opened dialog make sure that in the textbox Expression the name of the variable

Factorial is displayed
5. Press Enter.

REM. You’ll notice that the Watches window will be displayed in VBE and the name of the variable
added to the list of variables to watch.

6. Rerun the function Factorial for values less or greater than 12 and inspect the values and data
type of the function Factorial in the Watches window.

7. Change the statement Factorial = CLng(1) in Factorial = 1 and check the data type of the
Factorial function for different values of n in the Watches window.

1. Change the function to deal with negative numbers.
2. Add an IF block to check if n is less than zero. If this is the case, the function will return the

message “Negative”

Function Factorial(n As Long) As Variant

 Dim i As Integer

 If (n < 0) Then

 Factorial = "Negative"

 Else

 If (n > 12) Then

 Factorial = "Overflow"

 Else

 Factorial = 1

 For i = 1 To n

 Factorial = Factorial * i

 Next i

 End If

 End If

End Function

Loops with unknown number of steps

We will write a function that calculates the value of ex with a desired precision ε.

REM: To calculate ex we will use the series approximation:

𝑒𝑥 = ∑ 𝑢𝑘

∞

𝑖=0

= 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
 with 𝑢𝑘 =

𝑥𝑘

𝑘!
=

𝑥

𝑘
𝑢𝑘−1

1. Activate VBE and in module Module1 add the following code:
2. Insert this function in Excel and calculate the value of ex for different values of x.
3. Check the value returned from our function with the value obtained from the library function

EXP(x).
4. Change the value of the precision constant and rerun the code
5. Add a breakpoint at the beginning of the function and execute the code step by step for x=1.

Function ExpX(x As Double) As Double

 Const Eps = 0.0001

 Dim u As Double

 Dim k As Integer

 ExpX = 0

 u = 1

 k = 0

 Do While (u > Eps)

 ExpX = ExpX + u

 k = k + 1

 u = u * x / k

 Loop

End Function

REM. You’ll notice that we’ve added a constant, declared with the keyword Const.

We will write a function that calculates the square root of a number with a constant precision ε.

REM: We will used the fact that the sequence (𝑥𝑛) defined by 𝑥1 = 𝑎, 𝑥𝑛 =
1

2
(𝑥𝑛−1 +

𝑎

𝑥𝑛−1
) converges

to√𝑎. The limit for √𝑎 is the term for which |𝑥𝑛 − 𝑥𝑛−1| < 𝜀

Function SquareRoot(a As Double) As Double

 Const Eps = 0.0001

 Dim xn1 As Double

 Dim xn As Double

 xn = a

 Do

 xn1 = xn

 xn = (xn1 + a / xn1) / 2

 Loop While (Abs(xn - xn1) >= Eps)

 SquareRoot = xn

End Function

REM. To calculate the absolute value (without a sign) of a number we use the VB function Abs.

1. Activate VBE and in module Module1 add the previous code:

2. Insert this function in Excel and calculate the value of √𝑎 for different values of a.
3. Check the value returned from our function against the value obtained from the library function

SQRT(a).
4. Change the value of the precision constant and rerun the code
5. Add a breakpoint at the beginning of the function and execute the code step by step for a=4.

