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1 The TRUSS Element 

 
1.1 Geometry 
 
The truss element is straight with two end nodes.  The geometry is defined by the position of 
these end nodes.  The truss element is completely defined by its  
cross sectional area and the material type.  Only one material, one temperature and one 
strain is present in each element. 
 
 
 
 
 
 
 
 
 
 
 
 

 

N1 

N2 

1 

2 

3 

4 

5 

6 

Figure 7: Truss element - Degrees of freedom at nodes 
 
 
1.2 Integration on the volume 
 
All integrations are made analytically.  Hence, no points of integration are given in the 
program for truss elements. 
 
 
1.3 Strain 
 
The strain is uniform in the element and calculated according to: 
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where L is the deformed length of the element, and L0 is the un-deformed length of the 
element. 
 
 
1.4 Nodal forces 
 
In the co-rotational configuration, the two longitudinal forces are calculated according to: 
 

)2(
L
LAs

o

int  f x ±=  

where A is the cross sectional area, and s is the stress. 
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1.5 Stiffness matrix 
 
With the nodal displacements ordered as: 
 

( )3222111
T wvuwvu=p  

the stiffness matrix has the form: 
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with Et defined by the material model: 
 

(7)                                                                                                                                      
dε
dsEt =  
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2 The BEAM Element 

 
The beam element is straight in its un-deformed geometry. Its position in space is defined by 
the position of three nodes: the two end nodes (N1-N2), and a third node (N4) defining the 
position of the local y axis of the beam.  The node N3 is used to support an additional degree 
of freedom. 
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Figure 8: Beam element: (a) Local axes (b) Degrees of freedom at nodes (c) Cross 
section 

 
To describe the geometry of the cross section, the fibre model is used.  The cross section of 
the beam is subdivided into small fibres (triangles, quadrilaterals or both).  The material 
behaviour of each fibre is calculated at the centre of the fibre and it is constant for the whole 
fibre.  Each fibre has it's own material, this allows for the building of composite sections 
made of different materials. 
 
Assumptions for beam elements: 

• the Bernoulli Hypothesis is considered, i.e., the cross section remains plane under 
bending moment 

• plastifications are only considered in the longitudinal direction of the member, that is 
uni-axial constitutive models 

• non-uniform torsion is considered 
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3 The SHELL Element 

 
 
3.1 Geometry 
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Figure 11-a : Definition of the geometry and local axes 

 
The nodes are in the order 1, 2, 3, 4. 
a, b, c, d are the middle points of the edges of the elements. 
o, the centre of the local system of co-ordinates is at the intersection between a-c and b-d. 
z has the direction of d-b ^ a-c. 
x and y are perpendicular to z and their direction is chosen as to have the same angle 
between o-b and x, on one hand, and o-c and y, on the other hand. 
As a particular case, if the element is a plane rectangle, x is the median 0-b and y is the 
median o-c. 
 
 
3.2 Points of integration 
 
There are 4 points of integration on the surface of the element, see Figure 11 a. In each 
direction, the integration is by the method of gauss. 
The number of integration points on the thickness is chosen by the user, from 2 to 10. The 
integration is also by the method of Gauss. 
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3.3 Rebar 
 
Different layers of rebars can be present in the element.  The rebar layers are horizontal (i.e. 
parallel to the local x, y plane).  The rebars are uniformly distributed (layered rebars).  Each 
layer is defined by: 

• it’s local vertical coordinate z in the element (this level must not necessarily coincide 
neither with the position of a point of integration on the thickness, nor with a position 
where the temperature has been calculated. Linear interpolations are made); 

• it’s cross section per unit length of width (m²/m for example); 
• it’s material number; and 
• the angle between the direction of the rebars and the local x axis.. 

 
Assumptions for rebar elements are: 

• the cross section of the rebar is not subtracted from the plane section of the element. 
This means that, in a reinforced concrete slab, steel and concrete are supposed to be 
simultaneously present at the location of the bars, 

• the bars resist only axial direction actions. This means that a mesh of perpendicular 
rebars does not resist shear by itself. 

 
The figure 11-b is made for a rectangular element, and shows the way in which the angle is 
measured. 
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34
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Figure 11: Definition of the variable 'angle' 
 
The angle will be called θ in the later development: 
 
 
3.4 Influence of the bars on the stiffness of the shell 
 

A strain state ( ), ,x y xyε ε ε  in the shell, will generate a strain in the bars which is calculated by 

equation 1. Figure 12 shows how the component generated by xε  is derived. 

 

 ( ) ( )cos sinbar x yε θ ε θ ε= +  (1) 
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The absolute values are taken in order to obtain "tension leads to tension", even if the angle 
is higher than 90° or is smaller than 0°. 
 

X

Y εx

θ

εbar

 
Figure 12: relationship between the strains 

 
 
The uniaxial material law in the bars can be expressed by equation 2 (with a secant 
modulus) or equation 3 (with a tangent modulus). 
 
 secbar barEσ ε=  (2) 

 bar t bard E dσ ε=  (3) 

 
 
A stress barσ  in the bars (in N/m²) will generate a stress state in the shell (in N/m) which is 

calculated by equation 4. Figure 13 shows how the components are generated. 
 

 ( ) ( ) ( )( ); ; cos ; sin ; 0shell x y xy bar barAσ σ σ σ σ θ θ= =  (4) 

 
This stress has to be integrated on the width of the element in order to evaluate the 
equivalent nodal forces. 
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 Figure 13: relationship between the stresses 
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Combining equations 1, 2 and 4, for example, yields equation 5 which gives the increase of 
stiffness of the shell provided by the presence of the bars. Simply note that the equivalent 
relation with tangent modulus and increment of stresses and strains is in fact used in the 
code. 
 

 
( ) ( ) ( )

( ) ( ) ( )
cos ² cos sin

cos sin sin ²
x x

bar s
y y

A E
θ θ θσ ε

σ εθ θ θ

⎛ ⎞⎛ ⎞ ⎛
⎜=⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝⎝ ⎠

⎞
⎟ ⎟

⎠
 (5) 
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4 The SOLID Element 

 
 
4.1 Conduction [5] 
 
 
4.1.1 Introduction 

This section reviews the finite element method for heat transfer analysis, describing the 
principles of the finite element method and the derivation of the matrix form of the heat 
transfer equations. The derivation of the element stiffness matrices for two simple element 
types used in SAFIR is explained. The chapter concludes with a brief discussion of non-
linear and time-dependant finite element analysis. Only two-dimensional analysis is 
discussed here, three-dimensional analysis is a relatively straightforward extension of the 
theory for two dimensions. 

The material in this chapter results from a review of a number of references, see [6], [7] and 
[8]. 

 

 
4.1.2 Background 

The Finite Element Method is a numerical method for analysing continuous domains. Exact 
solutions of the governing equations for most practical problems can only be obtained for 
simple problems or problems in which restrictive assumptions are made with respect to 
geometry, material properties, and/or boundary conditions.  Numerical solution methods are 
needed for the analysis of practical problems. The finite element method is commonly used 
for problems that are too complicated to be solved by classical analytical methods. 

The Finite Element Method views a domain as an assembly of simple geometric shapes 
(called finite elements). The method is based on the concept that the solution of a differential 
equation can be reformulated as a linear combination of a series of unknown parameters and 
appropriately selected functions (called approximation functions or interpolation functions). 
The approximation functions are selected so that they satisfy the boundary conditions. Real 
problems are often based on geometric complex regions, and it is difficult to select 
approximation functions that satisfy the boundary conditions. If the region can be 
represented as a series of simple subdomains (or finite elements) that permit of the 
generation of approximation functions that satisfy the boundary conditions of each element, 
then the problem should be able to be solved. 
 
 
4.1.3 General Formulation 

The general equation for two-dimensional heat conduction in an isotropic material is 

 
t
TcQ

y
Tk

x
Tk

∂
∂

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ ρ2

2

2

2

 (3.1a) 

or 

 
t
TcQTk
∂
∂

=+∇ ρ2  (3.1b) 

 19/07/2007 10



    

where k is the thermal conductivity of the material, T is the temperature, Q is the amount 
heat generated in the material per unit volume, ρ is the density, c is the heat capacity, and t 
is time. 

If steady-state conditions exist, i.e. the temperature does not change with time, then the 
equation reduces to 

 0  (3.2) 2 =+∇ QTk

If there is no internal heat generation then the equation further reduces to 
  (3.3) 02 =∇ Tk

The boundary conditions may be a known temperature and/or a known heat flux (both 
conditions may not be specified over the same part of the boundary).  
 

Known temperature 

The temperature may be specified, i.e. T=TO 

 

Known Heat flux 
The heat flow may be specified. This requires that 

 
n
Tkq
∂
∂

−=  (3.4a) 

or 

 0=+
∂
∂ q

n
Tk  (3.4b) 

where q is the specified heat flow, and n is the outward normal vector to the boundary. 

 

This can be written in the alternative form 

 0=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ qn

y
Tn

x
Tk yx  (3.4c) 

where nx and ny are the components of the outward normal vector parallel to the x and y 
axes. 

For the heat transfer problem to be defined, at least one of these conditions must be 
specified on at least part of the boundary. 

This classical formulation (equation 3.1b) is suitable for solution by the finite difference 
method, but must be replaced by a variational formulation for Finite Element Analysis. A 
weighted residual method is normally used for this. 
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4.1.4 Weighted Residual Methods 

Several methods can be used to transform the heat transfer equation to a form suitable for 
Finite Element Analysis. The most common is the Weighted Residual Method. 

Consider a general differential equation of the form 

 02

2

=+
∂
∂ b

x
ua  (3.5) 

The solution of this equation, u, can be approximated by a function 

 )(...)()()( 2211 xaxaxaxu nnφφφ +++=  

or 

 ∑
=

=
n

i
ii xaxu

1
)()( φ  (3.6) 

u  is an approximation for u, so when (3.6) is substituted into (3.5), the equation will not 
necessarily equate to zero, i.e.  

 )(2

2

xeb
x
ua =+

∂
∂  (3.7) 

where e(x) is a non-zero residual. 

The weighted residual method requires that the weighted averages of the residual be equal 
to zero, so 

  (3.8) ∫ =
2

1

0)()(
x

x
i dxxexw

where wi(x) is a set of weighting functions. 

Theoretically, any set of weighting functions could be selected, and there are several 
methods used in finite element formulation that use different weighting functions. The most 
common weighted residual method is the Galerkin method, which equates the weighting 
function to global shape functions. The advantage of the Galerkin method over the other 
weighted residual methods is that it usually results in symmetrical matrices.  
 
 
4.1.5 Shape Functions 

Consider a one-dimensional heat transfer problem, e.g. radial heat transfer in a long cylinder, 
subjected to a heat flux of q/unit length in the inner surface, and with a fixed temperature of 
To at the outer surface. The exact solution, when the internal heat generation is zero, is 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

ln)(
R
r

k
qTrT o  (3.9) 
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where R2 is the radius to the outer surface, and k is the thermal conductivity. 
Consider a 2 node one-dimensional element with node 1 on the outside face and node 2 on 
the inside face of the cylinder (fig. 14). Approximate the actual temperature distribution with a 
linear temperature distribution. The temperature distribution can be given in terms of two 
linear functions, N1 and N2, each of which take the value of unity at the node with which they 

are associated and are zero at the other node. 

1

1

N1

N2

N1T1+N2T2

1 2

T2T1

1 2

 

Figure. 14 One element representation of a one-dimensional finite element model. 
 

A more accurate solution would be found if the radius were divided into three elements and 
four nodes (fig. 15). Within each element the temperature varies linearly.  

Consider a set of approximation functions N1(r), N2(r), N3(r), and N4(r) associated with each 
node in the element subdivision. A typical approximation function Ni(r) is zero over the whole 
mesh, except in the elements connected to node i.  

At node i the function has a value of unity, within the element associated with node i the 
function is linear. These functions are called the shape functions. 

1N1

N2

N1T1+N2T2+N3T3+N4T4

2 3
41

N3

N4

1

1

1

T1 T2
T3

T4

31 2 4
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Figure. 15 Three element representation of a one-dimensional finite element model. 
 

It can be seen that the temperature distribution can be represented by the expression 
 44332211)( TNTNTNTNrT +++=  (3.10) 

For an arbitrary number of elements this can be expressed as 

  (3.11) ∑
=

=
n

i
iiTNrT

1
)(

where Ni are the shape functions, and Ti are the nodal temperatures. 

Note the similarity of equation (3.11) with equation (3.6).  

In the Galerkin form of the weighted residual method, the weighting functions correspond to 
the shape functions, i.e. wi = Ni of equation 3.11, or wi = φi of equation 3.6. 
 
 
4.1.6 Finite Element Formulation in Two Dimensions 

Recall the general form of the two-dimensional steady state heat transfer equation (equation 
3.2) 

 0  (3.12) 2 =+∇ QTk

or 

 02

2

2

2

=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ Q

y
Tk

x
Tk  (3.13) 

The method of weighted residuals requires that the weighted averages of the residual be 
equal to zero 

  (3.14) ∫ =
A

iedAw 0

Now, if T is an approximation to the exact temperature distribution, then we can set 

 Q
y
Tk

x
Tke +

∂
∂

+
∂
∂

= 2

2

2

2

 (3.15) 

Substituting equation 3.15 into equation 3.14 gives 

 ∫ =⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

A
i dAQ

y
Tk

x
Tkw 02

2

2

2

 (3.16) 

Green’s Theorem states that the integrals of two arbitrary functions φ and ϕ  over an area A 
and its boundary S are related as follows 
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 ∫ ∫ ∂
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Applying Green’s Theorem to equation 3.16 results in 

 ∫ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

+
∂
∂

∂
∂

−⎥
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⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

S A
yx dAQw

y
T

y
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x
T

x
wkwdSn

y
Tkn

x
Tk 0  (3.17) 

Now consider the boundary conditions: the temperature specified over part of the boundary, 
and the heat flux specified over part of the boundary. At points where the temperature is 
specified the value of the weighting function is zero. Therefore the first integral in equation 
3.17 becomes zero where the temperature is specified. On those parts of the boundary 
where the heat flux is specified (from equation 3.4c) 

 0=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ qn

y
Tn

x
Tk yx  

or 

 qn
y
Tn

x
Tk yx −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂  (3.18) 

Substituting equation 3.18 into equation 3.17 gives 

 ∫ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

+
∂
∂

∂
∂

+
S A

dAQw
y
T

y
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x
T

x
wkqwdS 0  (3.19) 

Recall that the temperature field can be approximated as 

  (3.20) ∑
=

=
n

i
iiTNT

1

where Ni are the global shape functions and Ti are the unknown nodal temperatures.  

Also note that Galerkin’s method sets the weighting function equal to the shape functions 
 jj Nw =  (3.21) 

Equation 3.20 and 3.21 are substituted into equation 3.19 to give 

 ∫ ∫ ∑ ∑ =⎥
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This can be rearranged to give 
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The order of summation and integration can be interchanged 

 ∑ ∫ ∫∫
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This represents a series of n equations, which may be written in matrix form as: 
 [K]{a}={f} 

[K] is the global “stiffness” matrix, also called the conductivity matrix. {f} is the “force vector”. 
The components of these matrices are: 

 ∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂

∂
∂

+
∂

∂

∂
∂

=
A

jiji
ij dA

y
N

y
N

x
N

x
NkK  (3.22) 

  (3.23) ∫ ∫−=
A S

iii dSqNdAQNf

In practice, these matrices are established for each element separately, and then assembled 
to give the global matrices. The global matrices can then be solved for the nodal 
temperatures by any numerical solution technique. 

To show how the element conductivity matrices are derived in practice, the matrices for two 
types of elements used in SAFIR will be derived in the following section.  
 
 
4.1.7 Triangular (3 node) Elements 

Consider a triangular element, shown in figure 16. The element has three nodes. Each node 
has one degree of freedom, corresponding to the temperature at the node. 

1

2

x

y

3
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Figure. 16. Triangular finite element. 
 

As the temperature distribution within the element is linear, an expression for the 
temperature at any point within the element in terms of the x and y coordinates of that point 
can be written: 

 cybxaT ++=  (3.24) 

where a, b, and c are constants. If the known temperatures at the nodes are T1, T2, and T3 
then the values of the constants a, b, and c can be found by substituting the known nodal 
temperatures into equation 3.24: 

 111 cybxaT ++=  

 222 cybxaT ++=  (3.25) 

 333 cybxaT ++=  

where xi and yi are the coordinates of node i. 

Solving equation 3.25 for a, b, and c and substituting into equation 3.24 gives 

 ( ) ( ) ([ ]3333222211112
1 TyxTyxTyx
A

T γβαγβαγβα ++++++++= )  (3.26) 

where A is the area of the element, given by 

 

33

22

11

1
1
1

2
1

yx
yx
yx

DetA =  

or 

 ( )2312311332212
1 yxyxyxyxyxyxA −−−++=  

and 

 23321 yxyx −=α  

 321 yy −=β  

 231 xx −=γ  
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with the other components given by cyclic permutation of the subscripts. 

The shape functions can be written as 

 ( yx
A

N iiii γβα ++=
2
1 )  (3.27) 

This function is linear, and can be shown to have a value of unity at the node to which it 
relates and zero at the other nodes. These are the criteria required for the shape function. 
The profile of a shape function is shown in figure 17. 

1

x

y

1

3

2

N1

Figure. 17. Typical shape function for a triangular element. 
 

Equation 3.26 can then be written as 

  (3.28) ∑
=

=
3

1i
iiTNT

The stiffness matrix for the triangular element can be found by substituting equation 3.27 into 
equation 3.22, giving 

 ( )∫ +=
A

jijiij dA
A
kK γγββ24

 

If k is temperature dependent (which is the case in SAFIR), it is not possible to calculate the 
stiffness matrix analytically and it has to be done by a numerical technique of integration. The 
stiffness matrix is symmetric. 

  (3.29) 

 

The force vector is given by equation 3.23. 

The first term in equation 3.23 can be written as 
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  (3.32) { } ∫
⎥
⎥
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⎤

⎢
⎢
⎢

⎣

⎡
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A
Q dA

N
N
N

Qf

3

2

1

which results in 

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3
3
3

QA
QA
QA

f Q  (3.33) 

The second integral of equation 3.23 depends on which side of the triangular element is 
subjected to the boundary condition. If side 1-2 is subject to the boundary condition then 

  (3.34) { } ∫ ∫
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=−=

12 12 0
2

1

12,
S S

iq dSN
N

qdSqNf

where S12 denotes integration along side 1-2 of the element. The zero term in the matrix 
arises because N3 is zero along side 1-2. Substituting Li for Ni in equation 3.34 results in 

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

=
0
1
1

2
12

12,
qSf q  (3.35) 

Similarly 

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

=
1
1
0

2
23

23,
qSf q  

 { }
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

=
1
0
1

2
31

31,
qSf q  

Then the nodal force vector i 

{f}={f}Q+{f}q,12+{f}q,23+{f}q,31
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4.1.8 Rectangular (4 node) Element 

Consider a rectangular element with 4 nodes, see figure 18. In addition to the global 
coordinate system x,y, there is a normalised coordinate system ξ,η with its origin at the 
centre of the element. Note that, although Figure 0.6 is drawn for a rectangular element with 
the edges parallel to the global system of coordinates, SAFIR can accommodate any shape 

of quadrilateral elements, even irregular ones. 

x

y

hx

h y ξ

η

1 2

34

Figure. 18. Rectangular element and normalised coordinate system. 
 

The shape functions for this element are written in terms of the normalised coordinates: 

 

4/)1)(1(
4/)1)(1(
4/)1)(1(
4/)1)(1(

4

3

2

1

ηξ
ηξ
ηξ
ηξ

+−=
++=
−+=
−−=

N
N
N
N

 (3.38) 

A shape function for the rectangular element is shown in figure 19. 
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1
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3
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N1

4

 

Figure. 19. A typical rectangular element shape function. 
 

All matrices and vector derivations follow the same principles as for the triangular element. 

 

4.1.9 Convective Boundary Conditions 

The derivation of the finite element formulation in Section 0 ignored convective heat transfer 
at the boundaries. To account for convection requires a modification of the basic formulation 
already developed. Convection is described quantitatively by Newton’s Law of Cooling: 

 ( )∞−= TThq s  

where q is the convective heat transfer rate per unit area of surface, h is the heat transfer 
coefficient, Ts is the surface temperature of the body, and T: is the ambient temperature of 
surrounding medium. 

Equation 3.18 then becomes 

 ( )( )∞−+−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂ TThqn

y
Tn

x
Tk yx  

Substituting this into equation 3.17 yields 

 ( )∫ ∫ =⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

+
∂
∂

∂
∂

+−+ ∞
S A

dAQw
y
T

y
wk

x
T

x
wkdSTThqw 0  

Using equations 3.20 and 3.21 and rearranging gives 
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∫∑ ∫ ∫∑ ∫∫ ∞
= =

+−=⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

S
j

n

i A S
jj

n

i
i

S
jii

A

jiji dSNhTdSqNdAQNTdSNhNTdA
y

N
y

N
x

N
x

Nk
1 1

 

this can be expressed in matrix form as 

([K]+[H]){a}=f 

 
 
4.1.10 Time-Dependant (Transient) Problems 

Many real problems are time-dependant. The finite element formulation of a transient 
problem is a relatively simple extension of the steady-state formulation. In addition to 
specified boundary conditions, transient problems require an initial condition (at time t = 0) to 
be specified. 

The transient heat conduction problem is given by equation 3.1b 

 
t
TcQTk
∂
∂

=+∇ ρ2  

The procedure is similar to the steady-state problem. Using a weighted residual method and 
integrating by parts gives 

 ∫ ∫ ∫ =⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

∂
∂

+
∂
∂

∂
∂

+
S A A

dA
t
TcwdAQw

y
T

y
wk

x
T

x
wkqwdS 0ρ  (3.46) 

The weighting function w is not a function of time. A finite element formulation is substituted 
for T, assuming that the time dependence can be separated from the spatial dependence 

  (3.47) ( ) ( )∑
=

=
n

i
ii tTxNT

1

The weighting functions are equated to the shape functions (Galerkin’s Method). Equation 
3.47 is substituted into equation 3.46, and manipulated as before 

∑ ∫ ∫∫∑∫
==

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

+
∂

∂

∂
∂

+
n

i A S
jji

A

jiji
n

i A
ji dSqNdAQNTdA

y
N

y
N

x
N

x
Nk

dt
dTdANcN

11
ρ   

This can be written in matrix form as 

  (3.48) [ ]{ } [ ]{ } { } { }qQTKTM +=+
•

where  ∫=
A

jiij dxdyNcNM ρ

and the other terms are unchanged from the steady state formulation. 

 19/07/2007 22



    

It is not possible to integrate the equations with respect to time analytically. So they are 
discretised in time by normal finite element techniques, i.e. 

 { } ( )∑= nn TtNT  

If the temperature at the node changes from Tn to Tn+1 over a time interval Δt, then the 
shape functions are given by (see figure 20) 

 
ξ
ξ

=
−=

+1

1

n

n

N
N

 

where η varies from 0 to 1 and is given by 

 
t

t
Δ

=ξ  

t

Tn

Tn+1

Δt

Nn

Nn+1

1

1

T=TnNn+Tn+1Nn+1

ξ

 

Figure. 20. Temporal shape functions 
 

The derivatives of the shape functions with respect to time are 

 •

+

•

Δ
=

Δ
−

=

t
N

t
N

n

n

1

1

1

 

Discretisation of equation 3.48 gives 

  (3.49) [ ] [ ]{ } fNTNTKNTNTM kkkkkkkk =++
⎭
⎬
⎫

⎩
⎨
⎧ + +

•

+

•

11 { }
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Substituting the expressions for the shape functions and their derivatives into equation 3.49 
gives 

 [ ] [ ] { } [ ] [ ]( ) { } {fTK
t

MTK
t

M
kk +⎟

⎠
⎞

⎜
⎝
⎛ −−
Δ

=⎟
⎠
⎞

⎜
⎝
⎛ +
Δ + θθ 11 } (3.50) 

where 

 
∫
∫= 1

0

1

0

ξ

ξξ
θ

dW

dW

j

j
 

Equation 3.50 is solved at each time step for the nodal temperatures at time tk=(k+1)Δt. 

Selection of different distributions for the weighting function, Wj, result in different values for 
θ, as shown in figure 21. 

Nn+1

1

Nn

1

Δt

ξ

θ=0

θ=1

θ=1/2

θ=2/3

θ=1/3
 

Figure. 21. Weighting functions. 
 

It can be shown that any scheme with θ > 0.5 is unconditionally stable. If θ < 0.5, then the 
scheme is stable subject to the condition  

 ( ) max21
2
λθ−

≤Δt  

where λmax is the maximum eigenvalue of equation 3.48. 
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Although it is not unconditionally stable, the advantage of the forward difference scheme (θ = 
0) is that it is explicit and computationally simple. Other schemes are implicit and require the 
solution of an equation system at each time step. 

TASEF uses θ = 0. SAFIR allows the user to select the value of θ to be used (the parameter 
TETA in the DAT input file), and recommends a value of 0.9. Zienkiewicz reports that 
oscillations sometimes occur with θ=½, and for a simple problem involving 10 quadratic 
elements to model transient heating of a bar it was found values of 2/3 and 0.878 gave 
improved results. 

 

4.1.11 Non-Linear Problems 

Non-linear problems arise when k, ρ, and c are a function of the temperature. The matrix 
formulation is identical to equation 3.48, except an iterative solution is required at each time 
step. The simplest iterative method involves starting with an initial guess, T0, obtaining a 
more accurate solution be solving the equation 

  [ ]{ } { }( )[ ]{ } { } { }00101 qQTTKTM +=+
•

and then repeating the iteration scheme  

  [ ]{ } { }( )[ ]{ } { } { } 111 −−−

•

+=+ nnnnn qQTTKTM

until convergence lies within a suitable tolerance. 

 
 
4.1.12 Enthalpy formulation 
 

The non-linear problem involves 2 sets of equations. With slightly modified notations, 
these are: 

For the residue, which governs the solution to be obtained, 

{ } [ ]{ } [ ]{ } { } { }nT T
r K T C g

t
θ

θ θ
−

= + −
Δ

 

For the tangent matrix, which governs convergence towards the solution 

{ }
{ } [ ] [ ] { }

{ }
Cr g

K
T tθ

⎡ ⎤ ⎡ ⎤∂ ∂
= + −⎢ ⎥ ⎢ ⎥∂ Δ⎣ ⎦ ⎣ ⎦T∂

 

 

The capacity formulation amounts to evaluate the capacity matrix [C] at time tθ and to 
use this value directly in both equations. This can lead to problems if the capacity exhibits 
sharp variations with temperature. 
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Figure 1 shows the case when the temperature within a time step increases from Ti to Ti+1. Tθ 
is the temperature evaluated during the iterations, at time tθ. The first iteration is noted a, 
whereas the second iteration is noted b. 

With a capacity formulation, see the upper part of the Figure, the capacity may change 
dramatically from a to b, which can create convergence problems and, even more 
problematic, can lead to converging towards a solution that is missing totally the energy 
contained in the peak if the time step is too long. This will be the case if solution b is 
considered as a converged solution. 

Capacity

Temperature
Ti Ti+ 1Tθ,a Tθ,b

Enthalpy

Temperature
Ti Ti+ 1Tθ,a Tθ,b

Eθ,a

Eθ,b

 

Figure 1 : Capacity versus Enthalpy formulation 

 

The other possibility is to evaluate the enthalpy according to 

( ) ( )
0

T

E T C u d= ∫ u  

and the capacity to be used in the iteration process according to 
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( ) ( )i

i

E T E T
C

T T
θ

θ

−
=

−
 

In fact, this amounts to evaluate the average value of the capacity from Ti to Tθ. In the lower 
part of the Figure, this average capacity is indicated by the slope of the line from (Ti;Ei) to 
(Tθ,Eθ).  

The graph shows that the enthalpy curve is more continuous than the capacity curve and 
thus, the iteration matrix is less disturbed by slight variations of the temperature during the 
iteration process (in the Figure, the slope happens to be exactly the same for iterations a and 
b). Convergence is thus improved in the sense that less iterations are generally required for 
a given time step.  

More important is the fact that the value of the energy contained in the peak is not missed, 
even if no temperature is encountered in the peak during the iteration process. Convergence 
of the solution to the "exact" solution as a function of the size of the time steps is thus also 
improved, which means that bigger time steps can be used.  
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Figure 2 : comparison of the convergence 

 

This is exemplified in Figure 2. It shows the evolution of the temperature on the surface of a 
40 mm plaster board (discretised by ten 4 mm finite elements) exposed to 2 minutes of ISO 
fire as a function of the number of iterations that are required to simulate 20 minutes of fire. 
The curve noted "SAFIR 2001 free" has been calculated with a capacity formulation whereas 
the curve noted "SAFIR 2002" has been calculated with an enthalpy formulation. The highest 
number of iterations is obtained with a time step of 1 seconds, then 2, 3, 4, 5, 8, 10, 12, 15, 
20 and, for the enthalpy formulation only, with 30, 60 and 120 seconds. 

The first advantage mentioned previously is very marginal; nearly the same number of 
iterations is required in both formulations for a given time step. It has yet to be mentioned 
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that convergence was obtained by the enthalpy formulation with very long time steps that did 
not allow convergence by the capacity formulation. 

The second advantage is clearly visible here; a "precision" of 10°C was obtained with 7 times 
less iterations (2456/355), and a precision of 1°C with 3 times less iterations (4838/1639). 

Practically speaking, if the specific heat c and the specific mass ρ are known at 2 
temperatures T0 and T1 with T ∈ [T0,T1], with a linear variation assumed for both properties, 
then the enthalpy at temperature T is calculated according to 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) [ ] [ ]

( ) ( ) ( )

0

0

0

0

0

0

0

0

1 0 1 0
0 0 0 0 0

1 0 1 0

0

0 0
0 0

² ² ³ ³
2 3

T

T T

T

T

T

T

T

T

T

E T C u du

C u du C u du

E T C u du

c cE T c u T u T du
T T T T

E T k l u m nu du

T T T TE T k m T T l m k n l n

ρ ρρ

=

= +

= +

⎡ ⎤ ⎡− −
= + + − + −⎢ ⎥ ⎢− −⎣ ⎦ ⎣

= + + +

− −⎛ ⎞ ⎛= + − + + +⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫

∫ ∫

∫

∫

∫

⎤
⎥
⎦

⎞
⎟
⎠

 

with 

1 0

1 0

0 0

1 0

1 0

0 0

c cl
T T

k c l T

n
T T

m nT

ρ ρ

ρ

−
=

−
= −

−
=

−
= −
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4.2 Internal voids 
 
For thermal calculations in 2-D situations, the structure can have internal voids filled with air, 
as in hollow core concrete slabs, or H-steel sections encased in a box of thermally insulating 
material. 
 
Each void is surrounded by NFR frontier elements.  As far as linear elements are concerned, 
each element Ei has the two nodes: Ni and Ni+1.  Each Ni node belongs to two elements : Ei-1 
and Ei. 
  

EiEi-1

Ni+1

Ni

Ni-1

VOID

 
 
 

Figure 12: Void frontier 
 
Convection and radiation are treated separately. 
 
 
4.2.1 Convection 
 
The hypothesis is that the specific heat of the air is so small that it is neglected. Then, at any 
time, the fictitious temperature of the air in the void is uniform, determined by the convective 
fluxes received from all the elements: 
 

0=∫
L

c dLq  [W/m] 

 
with  : convective heat flux [W/m²] qc
 L : length of the frontier surrounding the void [m] 
 
With the FE formulation, we have a linear convective flux: 
 

( )h hE T T LEn n i v n i
n

nip

i

NFR
ω −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ =

==
∑∑

11

0  [W/m], 

 
or, in the particular case of linear elements, 
 

( )LEi hE T TN T TNi v i v i
i

NFR

2
01

1

− + − =−
=
∑  [W/m], 

 
where n: point of integration 
 nip: number of integration points on the frontier of an element 
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 hn: value of the shape function at point n 
 ωn: weight at point n 
 hEI: convection factor of the material in element Ei  
 Tv: fictitious temperature of the air in the void 
 Tn: temperature at point i  
 LEi: length of the frontier of the element Ei

 TNi: temperature at node I 
 
The last equation can be written as: 
 

( )T LE hE LEi hE TN TN TN LNv i i
i

NFR

i i i
i

NFR

i
i

NFR

=
−

= =
∑ ∑ ∑= + =

1
1

1 1
2 i  [W/m], 

 

where LN hE LE hE LE
i

i i i=
+− −1 1

2
i  [W/mK]. 

 
It comes: 
 

T

TN LN

LE hE

TN LN

LN
v

i i
i

NFR

i i
i

NFR

i i
i

NFR

i
i

NFR= ==

=

=

=

∑

∑

∑

∑
1

1

1

1

 [K]. 

 
The convective heat flux at each node is then given by: 
 

(gN LN T TNi i v= × − )i  [W/m].       (8) 

 
The derivative of the flux, used in the iteration matrix, is given by: 
 

gN LN T
LN LN

LN
i j i v j

i

t
t

NFR, ,= × =

=
∑

1

j

Hi

Rj

Hi

 [W/mK].      (9) 

 
This matrix is symmetric.  This contribution (Equation 9) to the matrix of iteration has not 
been programmed in SAFIR because it would dramatically increase the bandwidth of the 
problem.  It is perfectly possible to reach the correct equilibrium state, provided Equation 8 is 
correctly considered, even with an approximate matrix of iteration. 
 
 
4.2.2 Radiation 
 
The physical phenomena on each frontier element are radiation, illumination and net heat 
flux going out of the surface. They are defined by the following equations: 
 

( )R i T i H i T ii i i i= + = + −ε σ ρ ε σ ε4 4 1  [W/m²] 

 
H Fi ij=  [W/m²] 

 
q i T i H i T ii i i i= − = −ε σ α ε σ ε4 4  [W/m²] 
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5 Convergence Criteria 

 
Fint Internal forces. Those forces are calculated at the nodes as the result of the 

internal forces coming from the elements: axial forces, bending forces 
dui,j   incremental displacement at time step i and iteration j 
NDOF   Number of Degrees Of Freedom of the structure 
NE   Norm of the Energy, calculated at each iteration 
NET Norm of the Total Energy, calculated as the summation of all the previous 
 NE 
PRECISION a number, chosen by the user, supposed to be small 
 
At the beginning of the program: 
 
 NET = 0 
 
At each iteration of each time step: 
 

 NE du Fk
i j

k
k

NDOF

=
=
∑ , int

1

       (10) 

 
 NET = NET + NE 
 IF ( j ≤ 1 ) THEN 
 CRITER = 1 
 ELSE 
 IF ( NET = 0 ) THEN 
 CRITER = 0 
 ELSE 
 CRITER = NE / NET 
 ENDIF 
 ENDIF 
 IF ( CRITER < PRECISION ) then 
 convergence has been obtained 
 ELSE 
  convergence has not been obtained 
 ENDIF 
Note that NE is neither exactly the energy nor the norm of the energy.  It has the dimension 
of an energy because forces multiply displacements.  This has the advantage of giving equal 
importance to displacement-force type variables and to moment-rotation type variables.  The 
relative importance of these two groups of variables is also not dependent on the unit, which 
has been chosen for length, (metre or mm, for example) or for force (Newton or KiloNewton, 
for example).  It is not exactly the energy because a force associated to a negative 
displacement should be counted as a negative energy, whereas it is counted as positive in 
Equation 10.  Each component of Equation 10 is counted as positive because, if not, the 
negative components would tend to reduce the energy NE, and if by chance the sum of the 
negative components is exactly equal to the sum of the positive components, this would give 
NE = 0, whereas the iteration under consideration has produced a lot of incremental 
movements.  Even if all displacements and forces are positive, NET is not exactly the 
energy, as can be seen on the next figure, drawn for a system with 1 D.o.F., a load applied in 
two time steps under constant temperature TO, and then the temperature changing from T0 
to T1 in one time step. 
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Figure 13: Convergence iterations Figure 13: Convergence iterations 
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6 Storage of Stiffness Matrix 

 
The stiffness matrix is supposed to be symmetric. Only the upper part is stored. 
 
The matrix K is divided in 3 parts K11, K12=K21 and K22 
 

K
K K
K K

=
⎡

⎣
⎢

⎤

⎦
⎥

11 12
21 22

         (11) 

 
Index 1 is related to the undefined D.o.F., where the solution has to be calculated. 
Index 2 is related to the fixed D.o.F., where the solution is prescribed. 
Many of the K11 elements have the value 0, it is stored by the skyline technique. 
Matrix K11 is stored in the REAL vector RIGE. 
 
An INTEGER vector, NSTSKY is associated to the vector RIGE to retrieve the position of 
K11(i,j) in RIGE. 
NSTKY(j) is the position of K11(j,j) in RIGE. 
The retrieving function is IFCTSKY(i,j,NSTSKY).  It calculates the position of K11(i,j) in RIGE: 
IFCTSKY(i,j,NSTSKY) = NSTSKY(j)+i-j  with i ≤j 
 
Example: 
 
If matrix K11 has the following non 0 elements, they are stored in RIGE in the order  
1, 2, 3. 
 
  1 2  6     
   3 4 7     
    5 8     
K1 =    9 10  13  
      11  14  
       12 15 17 
        16 18 
         19 

 
RIGE = { K11(1,1) ; K11(1,2) ; K112,2) ; K11(2,3) ; K11(3,3) ; K11(1,4) ; K11(2,4) ,K11(3,4) ;  
..... } 
 
NSTSKY = { 1 ; 3 ; 5 ; 9 ; 11 ; 12 ;16; 19 } 
 
For example: 
K11(3,4) is stored in RIGE(IFCTSKY(3,4,NSTSKY) = RIGE(NSTSKY(4)+3-4) =  
RIGE(9+3-4) =  RIGE(8) 
 
NUACTIFS is the dimension of K11 and NSTSKY 
ILARGEUR11 is the dimension of RIGE 
 
The K12 part is stored in rK12, although it is stored in the manner of K21 
K12(i,j) is stored in rK12(j-NUACTIFS,i)  with i.le.j 
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7 NOMENCLATURE 

 
 E = Young’s modulus 
 lp = Limit of proportionality 
 e = Exponent of the law 
 D = Factor of the law 
 S = Stress 
 fy = Yield strength of steel 
 fc = Compressive strength of concrete 
 ft = tensile strength of concrete 
 � = Strain 

� = Stress 
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